It’s not likely that many people will witness the upcoming “ring of fire” annular solar eclipse on Tuesday (April 29), but if it were a total eclipse of the sun, then it might have been another story entirely.
For one thing, the April 29 annular solar eclipse is a highly rare “non-central eclipse,” with the axis of the moon’s shadow — known as the antumbra during an annular eclipse — passing mere kilometers above the continent of Antarctica. This eclipse is also in a very remote part of the world, making it very expensive to access, and with a low probability that observations could be made with its low altitude above the horizon.
There is little if any scientific value for an annular eclipse, especially at the low altitude where atmospheric effects would make extracting useful information difficult at best, and compared to a total eclipse nowhere near as visually spectacular. A partial solar eclipse will be visible from Australia, and parts of southern Indonesia, according to forecasts. [fusion_builder_container hundred_percent=”yes” overflow=”visible”][fusion_builder_row][fusion_builder_column type=”1_1″ background_position=”left top” background_color=”” border_size=”” border_color=”” border_style=”solid” spacing=”yes” background_image=”” background_repeat=”no-repeat” padding=”” margin_top=”0px” margin_bottom=”0px” class=”” id=”” animation_type=”” animation_speed=”0.3″ animation_direction=”left” hide_on_mobile=”no” center_content=”no” min_height=”none”][“Ring of Fire” Solar Eclipse of April 29: Visibility Maps (Gallery)]
But if Tuesday’s sun show were a total solar eclipse, certainly, someone would organize at least a plane to fly there to observe above any clouds.
It is a popular misconception that the phenomenon of a total eclipse of the sun is a rare occurrence. Quite the contrary. Approximately once every 18 months (on average) a total solar eclipse is visible from some place on the Earth’s surface. That’s two totalities for every three years.
However, seeing a total solar eclipse from a specific location is another story altogether. First, let’s look at some of the details that go into answering this question.
Solar eclipse’s shadowy details
On the average, the length of the moon’s shadow at new moon is 232,100 miles (373,530 km), and the distance to the nearest point of the Earth’s surface 234,900 miles (378,030 km). This means that when the moon passes directly in front of the sun, its shadow will usually miss the Earth by some 2,800 miles (4,500 km) and the eclipse will merely be annular, with a dazzling ring of sunlight still visible around the moon’s silhouette. [How Solar Eclipses Work (Infographic)]
[/fusion_builder_column][/fusion_builder_row][/fusion_builder_container]